
 

 

 

 

 

Abstract 
Single-particle cryo electron microscopy is a powerful tool to solve the three-dimensional structure of a given protein. The three-dimensional structure of a protein plays a key 
role in determining its function. Methods like AlphaFold have revolutionized protein structure prediction based only on the amino-acid sequence. However, proteins often 
appear in multiple different conformations, and it is highly relevant to resolve the full conformational distribution. 

Single-particle cryo-electron microscopy (cryo EM) is a powerful tool for capturing a large number of images of a given protein, frequently in different conformations. The 
images are, however, very noisy projections of the protein, and traditional methods for cryo EM reconstruction are limited to recovering a single, or a few, conformations. 

Here we introduce cryoSPHERE, a deep learning method that takes as input a nominal protein structure, e.g. from AlphaFold, learns how to divide it into segments, and how to 

move these as approximately rigid bodies to fit the different conformations present in the cryo EM dataset. This formulation is shown to provide enough constraints to recover 

meaningful reconstructions of single protein structures. 

 

CryoSPHERE is based on a variational          

auto-encoder (VAE) that, from a input     

structure and a set of cryo EM images: 

 

• Learns how to divide the amino acid chain 

into segments, given a user defined maximum 

number of seqgments (see Fig. 2). The input 

structure can for instance be obtained by     

AlphaFold. 

 

• Learns for each image approximately rigid 

transformations of the identified segments of 

the input structure to fit different               

conformations on an image-by-image (single 

particle) basis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: CryoSPHERE flow chart. The learnable parts of the model are the encoder, decoder and Gaussian mixture model (GMM).  

 

 

 

 

 

 

 

 

 

 

Figure 4:  From left to right: true structures  (blue) and cryoSPHERE predicted structures (green). 

We see an excellent agreement between ground truth and prediction. 

 

• CryoSPHERE is interpretable. We understand how each segment is deformed to    

obtain a specific conformation. 

Network Flowchart 

Learned GMM divides the protein perfectly into flexible 

and rigid segments  

Figure 2: Example of recovered segments with a Gaussian mixture of 6 components (in different        

colors). 

Figure 3: Simulated dissociation process of the upper two domains of the protein, which 

is depicted in Fig. 2. Left: Histograms of the distances of the two upper domains. The true           

distances of the dissocation process  are in green. The recovered distances are in blue. Right:     

Predicted against true distances in Ångstrom of the dissociation process. 

CryoSPHERE recovers continuous conformational                   

heterogeinity of a protein dissociation process 

CryoSPHERE predictions of dissociated structures 

Summary 

• CryoSPHERE reduces the dimensionality of the problem: instead of learning a    

transformation for each residue, it targets one transformation per segment, where 

the number of segments is small compared to the number of residues. 

• CryoSPHERE is resilient to noise: by constraining the motion to be approximately   

rigid, we restrict the motion to low frequency  movements, less polluted by noise. 

• CryoSPHERE is memory efficient compared to methods acting on an explicit or        

implicit grid. 


